npressfetimg-51.png

Molecular underpinnings of division of labour among workers in a socially complex termite | Scientific Reports – Nature.com

  • 1.

    Maynard Smith, J. & Szathmáry, E. The Major Transitions in Evolution (Oxford University Press, 1997).

    Book 

    Google Scholar 

  • 2.

    Korb, J. & Heinze, J. Major hurdles for the evolution of sociality. Annu. Rev. Entomol. 61, 297–316 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Bourke, A. F. G. The validity and value of inclusive fitness theory. Proc. R. Soc. B Biol. Sci. 278, 3313–3320 (2011).

    Article 

    Google Scholar 

  • 4.

    Wilson, E. O. The Insect Societies (Harvard University Press, 1971).

    Google Scholar 

  • 5.

    Jeanne, R. L. The evolution of the organization of work in social insects. Monit. Zool. Ital. Ital. J. Zool. 20, 119–133 (1986).

    Google Scholar 

  • 6.

    Wakano, J. Y., Nakata, K. & Yamamura, N. Dynamic model of optimal age polyethism in social insects under stable and fluctuating environments. J. Theor. Biol. 193, 153–165 (1998).

    ADS 
    Article 

    Google Scholar 

  • 7.

    Seeley, T. D. Adaptive significance of the age polyethism schedule in honeybee colonies. Behav. Ecol. Sociobiol. 11, 287–293 (1982).

    Article 

    Google Scholar 

  • 8.

    Hamilton, W. D. The genetical evolution of social behaviour. II. J. Theor. Biol. 7, 17–52 (1964).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Toth, A. L. & Robinson, G. E. Evo-devo and the evolution of social behavior. Trends Genet. 23, 334–341 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Smith, C. R., Toth, A. L., Suarez, A. V. & Robinson, G. E. Genetic and genomic analyses of the division of labour in insect societies. Nat. Rev. Genet. 9, 735–748 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Korb, J. Genes underlying reproductive division of labor in termites, with comparisons to social Hymenoptera. Front. Ecol. Evol. 4, 45 (2016).

    Article 

    Google Scholar 

  • 12.

    Feldmeyer, B., Elsner, D. & Foitzik, S. Gene expression patterns associated with caste and reproductive status in ants: Worker-specific genes are more derived than queen-specific ones. Mol. Ecol. 23, 151–161 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Corona, M. et al. Vitellogenin underwent subfunctionalization to acquire caste and behavioral specific expression in the harvester ant Pogonomyrmex barbatus. PLoS Genet. 9, e1003730 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Gräff, J., Jemielity, S., Parker, J. D., Parker, K. M. & Keller, L. Differential gene expression between adult queens and workers in the ant Lasius niger. Mol. Ecol. 16, 675–683 (2007).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 15.

    Nelson, C. M., Ihle, K. E., Fondrk, M. K., Juniorr, R. E. P. & Amdam, G. V. The gene vitellogenin has multiple coordinating effects on social organization. PLOS Biol. 5, e62 (2007).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 16.

    Morandin, C., Hietala, A. & Helanterä, H. Vitellogenin and vitellogenin-like gene expression patterns in relation to caste and task in the ant Formica fusca. Insectes Soc. 66, 519–531 (2019).

    Article 

    Google Scholar 

  • 17.

    Kohlmeier, P., Feldmeyer, B. & Foitzik, S. Vitellogenin-like A-associated shifts in social cue responsiveness regulate behavioral task specialization in an ant. PLOS Biol. 16, e2005747 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 18.

    Pan, M. L., Bell, W. J. & Telfer, W. H. Vitellogenic blood protein synthesis by insect fat body. Science 165, 393–394 (1969).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Whitfield, C. W. et al. Genomic dissection of behavioral maturation in the honey bee. Proc. Natl. Acad. Sci. 103, 16068–16075 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Robinson, G. E. & Page, R. E. Genetic determination of nectar foraging, pollen foraging, and nest-site scouting in honey bee colonies. Behav. Ecol. Sociobiol. 24, 317–323 (1989).

    Article 

    Google Scholar 

  • 21.

    Toth, A. L. & Robinson, G. E. Worker nutrition and division of labour in honeybees. Anim. Behav. 69, 427–435 (2005).

    Article 

    Google Scholar 

  • 22.

    Amdam, G. V., Simões, Z. L., Guidugli, K. R., Norberg, K. & Omholt, S. W. Disruption of vitellogenin gene function in adult honeybees by intra-abdominal injection of double-stranded RNA. BMC Biotechnol. 3, 1 (2003).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 23.

    Antonio, D. S. M., Guidugli-Lazzarini, K. R., do Nascimento, A. M., Simões, Z. L. P. & Hartfelder, K. RNAi-mediated silencing of vitellogenin gene function turns honeybee Apis mellifera workers into extremely precocious foragers. Naturwissenschaften 95, 953–961 (2008).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 24.

    Amdam, G. V. et al. Hormonal control of the yolk precursor vitellogenin regulates immune function and longevity in honeybees. Exp. Gerontol. 39, 767–773 (2004).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Inward, D., Beccaloni, G. & Eggleton, P. Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biol. Lett. 3, 331–335 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Korb, J. Termites, hemimetabolous diploid white ants?. Front. Zool. 5, 15 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    Crosland, M. W. J. & Traniello, J. F. A. Behavioral plasticity in division of labor in the lower termite Reticulitermes fukienensis. Naturwissenschaften 84, 208–211 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 28.

    Traniello, J. F. A. & Leuthold, R. H. Behavior and ecology of foraging in termites. In Termites: Evolution, Sociality, Symbioses, Ecology (eds Abe, T. et al.) 141–168 (Springer, 2000).

    Chapter 

    Google Scholar 

  • 29.

    Weil, T., Rehli, M. & Korb, J. Molecular basis for the reproductive division of labour in a lower termite. BMC Genomics 8, 198 (2007).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 30.

    Lin, S., Werle, J. & Korb, J. Transcriptomic analyses of the termite, Cryptotermes secundus, reveal a gene network underlying a long lifespan and high fecundity. Commun. Biol. 4, 1–12 (2021).

    Article 
    CAS 

    Google Scholar 

  • 31.

    Korb, J. Juvenile hormone: A central regulator of termite caste polyphenism. In Advances in Insect Physiology Vol. 48 (ed. Kent, A. Z.) 131–161 (Academic Press, 2015).

    Google Scholar 

  • 32.

    Watanabe, D., Gotoh, H., Miura, T. & Maekawa, K. Social interactions affecting caste development through physiological actions in termites. Front. Physiol. 5, 127 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Okot-Kotber, B. M. Mechanisms of caste determination in a higher termite, Macrotermes michaelseni (Isoptera, Macrotermitinae). In Caste Differentiation in Social Insects (eds Watson, J. A. L. et al.) 267–306 (Pergamon, 1985).

    Chapter 

    Google Scholar 

  • 34.

    Brent, C. S., Schal, C. & Vargo, E. L. Endocrine changes in maturing primary queens of Zootermopsis angusticollis. J. Insect Physiol. 51, 1200–1209 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    Korb, J., Hoffmann, K. & Hartfelder, K. Endocrine signatures underlying plasticity in postembryonic development of a lower termite, Cryptotermes secundus (Kalotermitidae). Evol. Dev. 11, 269–277 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 36.

    Terrapon, N. et al. Molecular traces of alternative social organization in a termite genome. Nat. Commun. 5, 3636 (2014).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Harrison, M. C. et al. Hemimetabolous genomes reveal molecular basis of termite eusociality. Nat. Ecol. Evol. 2, 557–566 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Gerber, C., Badertscher, S. & Leuthold, R. Polyethism in Macrotermes bellicosus (Isoptera). Insectes Soc. 35, 226–240 (1988).

    Article 

    Google Scholar 

  • 39.

    Lys, J.-A. & Leuthold, R. H. Task-specific distribution of the two worker castes in extranidal activities in Macrotermes bellicosus (Smeathman): Observation of behaviour during food acquisition. Insectes Soc. 38, 161–170 (1991).

    Article 

    Google Scholar 

  • 40.

    Noirot, C. Formation of Castes in the Higher Termites Vol. 1, 311–350 (Academic Press, 1969).

    Google Scholar 

  • 41.

    Hamilton, W. D. The moulding of senescence by natural selection. J. Theor. Biol. 12, 12–45 (1966).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Charlesworth, B. Evolution in Age-Structured Populations (Cambridge University Press, 1980).

    MATH 

    Google Scholar 

  • 43.

    Elsner, D., Meusemann, K. & Korb, J. Longevity and transposon defense, the case of termite reproductives. Proc. Natl. Acad. Sci. 115, 5504–5509 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 44.

    Cohen, E. Chapter 97: Fat body. In Encyclopedia of Insects 2nd edn (eds Resh, V. H. & Cardé, R. T.) 356–357 (Academic Press, 2009).

    Chapter 

    Google Scholar 

  • 45.

    Costa-Leonardo, A. M., Laranjo, L. T., Janei, V. & Haifig, I. The fat body of termites: Functions and stored materials. J. Insect Physiol. 59, 577–587 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Tasaki, E., Sakurai, H., Nitao, M., Matsuura, K. & Iuchi, Y. Uric acid, an important antioxidant contributing to survival in termites. PLoS ONE 12, e0179426 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 47.

    Rutz, W. & Lüscher, M. The occurrence of vitellogenin in workers and queens of Apis mellifica and the possibility of its transmission to the queen. J. Insect Physiol. 20, 897–909 (1974).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Misof, B. et al. Phylogenomics resolves the timing and pattern of insect evolution. Science 346, 763–767 (2014).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Monroy Kuhn, J. M., Meusemann, K. & Korb, J. Disentangling the aging gene expression network of termite queens. BMC Genomics 22, 339 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 50.

    Chandra, V. et al. Social regulation of insulin signaling and the evolution of eusociality in ants. Science 361, 398–402 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 51.

    West-Eberhard, M. J. Flexible strategy and social evolution. In Animal Societies: Theories and Facts (eds Itô, Y. et al.) 35–51 (Japan Scientific Societies Press, 1987).

    Google Scholar 

  • 52.

    Toth, A. L., Kantarovich, S., Meisel, A. F. & Robinson, G. E. Nutritional status influences socially regulated foraging ontogeny in honey bees. J. Exp. Biol. 208, 4641–4649 (2005).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 53.

    Shell, W. A. et al. Sociality sculpts similar patterns of molecular evolution in two independently evolved lineages of eusocial bees. Commun. Biol. 4, 1–9 (2021).

    Article 
    CAS 

    Google Scholar 

  • 54.

    Rehan, S. M., Berens, A. J. & Toth, A. L. At the brink of eusociality: Transcriptomic correlates of worker behaviour in a small carpenter bee. BMC Evol. Biol. 14, 260 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 55.

    Kapheim, K. M. & Johnson, M. M. Support for the reproductive ground plan hypothesis in a solitary bee: Links between sucrose response and reproductive status. Proc. R. Soc. B 284, 20162406 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 56.

    Chandra, V. & Kronauer, D. J. C. Foraging and feeding are independently regulated by social and personal hunger in the clonal raider ant. Behav. Ecol. Sociobiol. 75, 41 (2021).

    Article 

    Google Scholar 

  • 57.

    Flatt, T., Tu, M.-P. & Tatar, M. Hormonal pleiotropy and the juvenile hormone regulation of Drosophila development and life history. BioEssays 27, 999–1010 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    Corona, M. et al. Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity. Proc. Natl. Acad. Sci. 104, 7128–7133 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 59.

    Münch, D. & Amdam, G. V. The curious case of aging plasticity in honey bees. FEBS Lett. 584, 2496–2503 (2010).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 60.

    Bernadou, A., Hoffacker, E., Pable, J. & Heinze, J. Lipid content influences division of labour in a clonal ant. J. Exp. Biol. 223, 219 (2020).

    Google Scholar 

  • 61.

    Ament, S. A., Corona, M., Pollock, H. S. & Robinson, G. E. Insulin signaling is involved in the regulation of worker division of labor in honey bee colonies. Proc. Natl. Acad. Sci. 105, 4226–4231 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 62.

    Tasaki, E., Kobayashi, K., Matsuura, K. & Iuchi, Y. An efficient antioxidant system in a long-lived termite queen. PLoS ONE 12, e0167412 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 63.

    Tasaki, E., Kobayashi, K., Matsuura, K. & Iuchi, Y. Long-lived termite queens exhibit high Cu/Zn-superoxide dismutase activity. Oxid. Med. Cell. Longev. 2018, 5127251 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 64.

    Corona, M., Hughes, K. A., Weaver, D. B. & Robinson, G. E. Gene expression patterns associated with queen honey bee longevity. Mech. Ageing Dev. 126, 1230–1238 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 65.

    Margotta, J. W., Roberts, S. P. & Elekonich, M. M. Effects of flight activity and age on oxidative damage in the honey bee, Apis mellifera. J. Exp. Biol. 221, 183228 (2018).

    Article 

    Google Scholar 

  • 66.

    Ruelle, J. E. Revision of the termites of the genus Macrotermes from the Ethiopian region (Isoptera: Termitidae). Br. Mus. Nat. Hist. Bull. Entomol. 24, 365–444 (1970).

    Google Scholar 

  • 67.

    Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. (2010).

  • 68.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 69.

    Tange, O. GNU parallel: The command-line power tool. Login USENIX Mag. 36, 42–47 (2011).

    Google Scholar 

  • 70.

    Poulsen, M. et al. Complementary symbiont contributions to plant decomposition in a fungus-farming termite. Proc. Natl. Acad. Sci. USA 111, 14500–14505 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 71.

    Kim, D., Langmead, B. & Salzberg, S. L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 72.

    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 73.

    Anders, S., Pyl, P. T. & Huber, W. HTSeq A Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 74.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–34 (2014).

    Article 
    CAS 

    Google Scholar 

  • 75.

    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2016).

  • 76.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B. 57, 289–300 (1995).

    MathSciNet 
    MATH 

    Google Scholar 

  • 77.

    Jones, P. et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 78.

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 79.

    Alexa, A., Rahnenführer, J. & Lengauer, T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 22, 1600–1607 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 80.

    Huang, C. & de la Cruz, M. O. The early stages of the phase separation dynamics in polydisperse polymer blends. Macromolecules 27, 4231–4241 (1994).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 81.

    Yagi, K. J. et al. Phe-Gly-Leu-amide allatostatin in the termite Reticulitermes flavipes: Content in brain and corpus allatum and effect on juvenile hormone synthesis. J. Insect Physiol. 51, 357–365 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 82.

    IBM Corp. Released 2015 IBM SPSS Statistics for Windows Version 23.0 (IBM Corp, 2015).

    Google Scholar 

  • 83.

    Faul, F., Erdfelder, E., Lang, A.-G. & Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39, 175–191 (2007).

    Article 

    Google Scholar 

  • 84.

    Faul, F., Erdfelder, E., Buchner, A. & Lang, A.-G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 41, 1149–1160 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Leave a Reply

    Your email address will not be published. Required fields are marked *

    npressfetimg-52.png Previous post Insect Pest Control Market worth $15.8 billion by 2026 – Exclusive Report by MarketsandMarkets™ – Yahoo Finance
    npressfetimg-50.png Next post The No. 1 Sign You Have Termites in Your Home, Experts Say – Best Life